Recitation 11: Weak Convergence Lecturer: Chenlin Gu **Exercise 1.** Prove that random variable X is symmetric (X and -X have the same law) if and only if its characteristic function φ_X takes real value. **Exercise 2.** Let $X \sim \mathcal{N}(0, \sigma^2)$ and Φ its characteristic function. - 1. Prove that $\Phi'(t) = -t\sigma^2\Phi(t)$; - 2. Calculate $\Phi(t)$. **Exercise 3.** Calculate the characteristic function for the random variable X if - 1. X follows Bernoulli distribution of parameter $p \in (0,1)$; - 2. X follows Binominal distribution of parameter (n, p); - 3. X follows Poisson distribution of parameter λ ; - 4. X follows exponential distribution of parameter θ ; - 5. X follows symmetric exponential distribution of density $f(y) = \frac{\lambda}{2}e^{-\lambda|y|}$; - 6. X follows Cauchy distribution of density $f(x) = \frac{\alpha}{\pi(\alpha^2 + x^2)}$. **Exercise 4.** Prove that if $(X_n)_{n\in\mathbb{N}}$ satisfies uniform integrability, then they are tight. **Exercise 5** (Slutsky's theorem). If X_n converges in distribution to X and Y_n converges in distribution to a constant c, then the joint vector (X_n, Y_n) converges in distribution to (X, c).