Recitation 11: Weak Convergence

Lecturer: Chenlin Gu

Exercise 1. Prove that random variable X is symmetric (X and -X have the same law) if and only if its characteristic function φ_X takes real value.

Exercise 2. Let $X \sim \mathcal{N}(0, \sigma^2)$ and Φ its characteristic function.

- 1. Prove that $\Phi'(t) = -t\sigma^2\Phi(t)$;
- 2. Calculate $\Phi(t)$.

Exercise 3. Calculate the characteristic function for the random variable X if

- 1. X follows Bernoulli distribution of parameter $p \in (0,1)$;
- 2. X follows Binominal distribution of parameter (n, p);
- 3. X follows Poisson distribution of parameter λ ;
- 4. X follows exponential distribution of parameter θ ;
- 5. X follows symmetric exponential distribution of density $f(y) = \frac{\lambda}{2}e^{-\lambda|y|}$;
- 6. X follows Cauchy distribution of density $f(x) = \frac{\alpha}{\pi(\alpha^2 + x^2)}$.

Exercise 4. Prove that if $(X_n)_{n\in\mathbb{N}}$ satisfies uniform integrability, then they are tight.

Exercise 5 (Slutsky's theorem). If X_n converges in distribution to X and Y_n converges in distribution to a constant c, then the joint vector (X_n, Y_n) converges in distribution to (X, c).